حل عددی رده ای از معادلات انتگرال ولترا با روش های چندگامی هم محلی

پایان نامه
چکیده

در این رساله، رده ی جدیدی از روش های هم محلی برای حل عددی معادلات انتگرال ولترا ‎vie)‎) مورد بررسی قرار می گیرد.دسته ی جدیدی از روش های چندگامی هم محلی را برای حل دو نوع از معادلات انتگرال ولترای غیرخطی شامل مسائل سخت و غیرسخت معرفی می کنیم. این روش ها که آن ها را روش های چندگامی هم محلی فراضمنی ‎(simcms)‎ می نامیم، برای تقریب جواب در هر زیر بازه، با در نظر گرفتن یک افراز یکنواخت، با استفاده از تعداد معینی از نقاط گامی قبلی و تعداد معینی از نقاط هم محلی زیربازه ی جاری و بعدی به دست می آیند. در ادامه، به منظور ساختن روش های ‎-a‎پایدار از مرتبه ی همگرایی بالاتر که تقریب های هموار تولید می کنند، روش های چندگامی هم محلی هرمیتی ‎(mhcms)‎ را بر اساس درونیابی هرمیت، معرفی می کنیم. این روش ها تقریبی از جواب را در هر زیربازه با استفاده از مقادیر تقریبی جواب و نیز مقادیر تقریبی مشتق آن در تعداد معینی نقطه ی گامی قبلی و تعداد معینی نقطه ی هم محلی تولید می کنند. مرتبه ی همگرایی بالا و ویژگی های پایداری خطی قابل ملاحظه ی روش های چندگامی هم محلی در حل عددی ‎vie‎ یک بعدی، ما را ترغیب می کند تا این روش ها را برای حل عددی ‎vie‎ دوبعدی به کار بریم. همچنین روش های چندگامی هم محلی تکراری را برای حل عددی ‎vie‎ دوبعدی پیشنهاد می دهیم. این روش ها، پس از مستطیل بندی دامنه ی انتگرال گیری برای تقریب جواب در هر مستطیل، وابسته به تعداد معینی از مقادیر تقریبی جواب در نقاط شبکه بندی قبلی و نقاط هم محلی در مستطیل جاری است. برای روش های ساخته شده، مرتبه ی همگرایی روش ها و نیز مرتبه ی فوق همگرایی موضعی بیان می شوند. هم چنین، ویژگی های پایداری خطی روش ها برای هر دو نوع ‎simcms‎ و در ‎mhcms‎ مورد بررسی قرار می گیرد که نشان می دهد که در برخی حالات روش های ‎-a‎پایدار از این دسته روش ها موجود هستند. کارایی روش های ساخته شده و نتایج نظری ثابت شده با استفاده از نتایج عددی و مقایسه ی نتایج حاصل با روش های عددی مشابه مورد تائید قرار می گیرد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش های هم مکانی چندگامی برای حل معادلات انتگرال ولترا

معادلات انتگرال ولترا رده مهمی از معادلات انتگرال است که در بسیاری از علوم رسیدن به نتایج مطلوب منوط به حل هر چه دقیق تر این معادلات است.این پایان نامه برای حل معادلات انتگرال ولترا روش هم مکانی چند گامی را ارائه نموده است که بدون افزایش محاسبات به جواب دقیق تری دسترسی پیدا می کند.در این پایان نامه به انتگرال گیری عددی برای حل انتگرال های معین می پردازیم.و روش های عددی حل معادلات انتگرال از جمل...

موجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات

این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.

متن کامل

روش های هم محلی جندگامی برای حل معادلات انتگرال ولترا

در این پایان نامه روش های هم محلی برای حل معادلات انتگرال ولترا معرفی می شوند که در آن جواب در هر نقطه گرهی به تعداد جواب در تعداد ثابتی از گره های قبل وابسته است با این هدف که مرتبه ی روش بالا برود بدون اینکه هزینه های محاسباتی افزایش یابند. در این پایان نامه در ابتدا روش های هم محلی برسی می شوند و سپس روش جدید معرفی خواهد شد و مرتبه ی همگرایی و فوق همگرایی و هم چنین پایداری روش بررسی می شود....

15 صفحه اول

روش هم محلی توابع پایه ای شعاعی برای حل عددی معادلات انتگرال ولترا- فردهلم- همراشتاین

یک روش عددی بر اساس روش طیفی، برای حل عددی معادلات انتگرال ولترا- فردهلم- همراشتاین معرفی کرده ایم. انتگرال مورد بحث در فرمولهای مسائل، بر اساس قانون انتگرال گیری لژاندر- گاوس- لوباتو تقریب زده میشود.

15 صفحه اول

روش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی

در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.

متن کامل

حل معادلات انتگرال ولترا با استفاده از روش هم محلی لژاندر

هدف این پایان نامه مطالعه ی یک روش عددی جدید برای حل معادلات انتگرال ولترا بر پایه ی روش طیفی است. روش طیفی هم محلی لژاندر، برای حل معادلات انتگرال ولترای نوع دوم پیشنهاد شده است و همچنین یک تحلیل خطا با دقت بالا برای این روش ارائه شده که نشان می دهد با شرط به اندازه کافی هموار بودن تابع هسته و تابع منبع خطا ی عددی به صورت نمایی کاهش پیدا می کند. نتایج عددی پیش بینی نظری همگرایی با سرعت نمایی...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023